
7 Your Daily Dose of Vitamin 𝑖

1. We will use complex numbers to find identities for cot. Use Pascal’s triangle to expand the
following:

(a) (𝑎 + 𝑏)3

(𝑎 + 𝑏)3 = 𝑎3 + 3𝑎2𝑏 + 3𝑎𝑏2 + 𝑏3.
(b) (𝑎 + 𝑏)4

(𝑎 + 𝑏)4 = 𝑎4 + 4𝑎3𝑏 + 6𝑎2𝑏2 + 4𝑎𝑏3 + 𝑏4.
(c) (𝑎 + 𝑏)5

(𝑎 + 𝑏)5 = 𝑎5 + 5𝑎4𝑏 + 10𝑎3𝑏2 + 10𝑎2𝑏3 + 5𝑎𝑏4 + 𝑏5.

1. (cont.) Then substitute 𝑏 = 𝑖 =
√
−1 and expand:

(d) (𝑎 + 𝑖)3

(𝑎 + 𝑏)3 = 𝑎3 + 3𝑎2𝑏 + 3𝑎𝑏2 + 𝑏3 = 𝑎3 + 3𝑎2𝑖 − 3𝑎 − 𝑖.
(e) (𝑎 + 𝑖)4

(𝑎 + 𝑏)4 = 𝑎4 + 4𝑎3𝑏 + 6𝑎2𝑏2 + 4𝑎𝑏3 + 𝑏4 = 𝑎4 + 4𝑎3𝑖 − 6𝑎2 − 4𝑎𝑖 + 1.
(f) (𝑎 + 𝑖)5

(𝑎 + 𝑖)5 = 𝑎5 + 5𝑎4𝑏 + 10𝑎3𝑏2 + 10𝑎2𝑏3 + 5𝑎𝑏4 + 𝑏5 = 𝑎5 + 5𝑎4𝑖 − 10𝑎3 − 10𝑎2𝑖 + 5𝑎 + 𝑖.
1. (cont.) Finally, substitute 𝑎 = cot 𝜃 and expand:

(g) (cot 𝜃 + 𝑖)3

(cot 𝜃 + 𝑖)3 = 𝑎3 + 3𝑎2𝑖 − 3𝑎 − 𝑖 = (cot3 𝜃 − 3 cot 𝜃) + 𝑖(3 cot2 𝜃 − 1).
(h) (cot 𝜃 + 𝑖)4

(cot 𝜃 + 𝑖)4 = 𝑎4 + 4𝑎3𝑖 − 6𝑎2 − 4𝑎𝑖 + 1 = (cot4 𝜃 − 6 cot2 𝜃 + 1) + (4 cot3 𝜃 − 4 cot 𝜃).
(i) (cot 𝜃 + 𝑖)5

(cot 𝜃 + 𝑖)5 = 𝑎5 + 5𝑎4𝑖 − 10𝑎3 − 10𝑎2𝑖 + 5𝑎 + 𝑖 = (cot5 𝜃 − 10 cot3 𝜃 + 5 cot 𝜃) + 𝑖(5 cot4 𝜃 − 10 cot2 𝜃 + 1).
1. (cont.) Consider 𝑧 = 𝑖 + cot 𝜃.

(j) Use the above results to find identities for (i) cot 3𝜃, (ii) cot 4𝜃, and (iii) cot 5𝜃.

i. cot 3𝜃

Given the right triangle formed by 𝑧 = 𝑖+cot 𝜃 in Figure 7, we have tan(Arg 𝑧) = 1
cot 𝜃 = tan 𝜃, so Arg 𝑧 = 𝜃

and 𝑧 = 𝑟 cis 𝜃.

1

𝑧 = 𝑖 + cot 𝜃

cot 𝜃

𝜃
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Figure 1: Arg(𝑖 + cot 𝜃) = 𝜃.

Thus, we have

cot 3𝜃 = cos 3𝜃
sin 3𝜃

= Re(cis 3𝜃)
Im(cis 3𝜃)

= Re(𝑟3 cis 3𝜃)
Im(𝑟3 cis 3𝜃)

= Re(𝑧3)
Im(𝑧3)

.

We substitute in our expression for 𝑧3, (cot3 𝜃 − 3 cot 𝜃) + 𝑖(3 cot2 𝜃 − 1):

cot 3𝜃 = cot3 𝜃 − 3 cot 𝜃
3 cot2 𝜃 − 1

.

i. cot 4𝜃

We proceed in the same way as the last subproblem.

cot 4𝜃 = cos 4𝜃
sin 4𝜃

= Re(cis 4𝜃)
Im(cis 4𝜃)

= Re(𝑟4 cis 4𝜃)
Im(𝑟4 cis 4𝜃)

= Re(𝑧4)
Im(𝑧4)

cot 4𝜃 = cot4 𝜃 − 6 cot2 𝜃 + 1
4 cot3 𝜃 − 4 cot 𝜃

.

i. cot 5𝜃

We proceed in the same way as the last subproblem.

cot 5𝜃 = cos 5𝜃
sin 5𝜃

= Re(cis 5𝜃)
Im(cis 5𝜃)

= Re(𝑟5 cis 5𝜃)
Im(𝑟5 cis 5𝜃)

= Re(𝑧5)
Im(𝑧5)

= cot5 𝜃 − 10 cot3 𝜃 + 5 cot 𝜃
5 cot4 𝜃 − 10 cot2 𝜃 + 1

.

(k) Graph 𝑧, 𝑧2, 𝑧3, 𝑧4, and 𝑧5, with 𝜃 ≈ 75◦. What is your solution method?

To graph these, I first calculated the approximate magnitude of 𝑧, which is how many times each subse-
quent power will be scaled by. We have |1 + cot 75◦| ≈ 1.268, so we only need to scale by about 5

4 each time.
Of course, we rotate by about 75◦ each time.
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𝑦

𝑥

𝑧

𝑧2

𝑧3

𝑧4

𝑧5

Figure 2: Graphs of 𝑧, 𝑧2, 𝑧3, 𝑧4, and 𝑧5.

2. Compute (1 + 𝑖)𝑛 for 𝑛 = 3, 4, 5,…. Can you find a general pattern?

We have

(1 + 𝑖)3 = 13 + 3𝑖 − 3 − 𝑖 = −2 − 2𝑖
(1 + 𝑖)4 = 14 + 4𝑖 − 6 − 6𝑖 + 1 = −4 − 2𝑖
(1 + 𝑖)5 = 15 + 5𝑖 − 10 − 10𝑖 + 5 + 𝑖 = −4 − 4𝑖.

We can find the pattern by representing 1 + 𝑖 =
√
2 cis 45◦. This shows that it has period 8 and let’s us

find an expression for (1 + 1)𝑛:

(1 + 𝑖)𝑛 =
(√

2 cis 45◦
)𝑛

= 2𝑛∕2 cis
(𝑛𝜋

4

)
.

3. Expand and graph cis𝑛 𝜃 for 𝑛 = 2, 3, 4,….

Let cos 𝜃 = 𝑐 and sin 𝜃 = 𝑠. We have

(𝑐 + 𝑖𝑠)2 = 𝑐2 + 2𝑐𝑠𝑖 − 𝑠2 = (𝑐2 − 𝑠2) + 𝑖(2𝑐𝑠)
(𝑐 + 𝑖𝑠)3 = 𝑐3 + 3𝑐2𝑠𝑖 − 3𝑐𝑠2 − 𝑠3𝑖 = (𝑐3 − 3𝑐𝑠2) + 𝑖(3𝑐2𝑠 − 𝑠3)
(𝑐 + 𝑖𝑠)4 = 𝑐4 + 4𝑐3𝑠𝑖 − 6𝑐2𝑠2 − 4𝑐𝑠3𝑖 + 𝑠4 = (𝑐4 − 6𝑐2𝑠2 + 𝑠4) + 𝑖(4𝑐3𝑠 − 4𝑐𝑠3)
(𝑐 + 𝑖𝑠)5 = 𝑐5 + 5𝑐4𝑠𝑖 − 10𝑐3𝑠2 − 10𝑐2𝑠3𝑖 + 5𝑐𝑠4 + 𝑠5𝑖 = (𝑐5 − 10𝑐3𝑠2 + 5𝑐𝑠4) + 𝑖(5𝑐4𝑠 − 10𝑐2𝑠3 + 𝑠5).

The graphs of cis𝑛 𝜃 for 𝜃 ≈ 50◦ are shown in Figure 3 below.
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𝑦

𝑥

cis 𝜃
cis2 𝜃

cis3 𝜃

cis4 𝜃

cis5 𝜃
Figure 3: Graphs of cis𝑛 𝜃 for 𝜃 ≈ 50◦.

(a) Why is the real part cos 𝑛𝜃 and the imaginary part sin 𝑛𝜃?

By DeMoivre’s theorem, cis𝑛 𝜃 = cis 𝑛𝜃, which by definition has Im(cis 𝑛𝜃) = cos 𝑛𝜃 and Re(cis 𝑛𝜃) = sin 𝑛𝜃.

(b) Use your results to write identities for cos 𝑛𝜃 and sin 𝑛𝜃 for 𝑛 = 2, 3, 4, 5.

Here they are. Again, let cos 𝜃 = 𝑐 and sin 𝜃 = 𝑠:

cos 2𝜃 = Re(cis 2𝜃) = 𝑐2 − 𝑠2

cos 3𝜃 = Re(cis 3𝜃) = 𝑐3 − 3𝑐𝑠2

cos 4𝜃 = Re(cis 4𝜃) = 𝑐4 − 6𝑐2𝑠2 + 𝑠4

cos 5𝜃 = Re(cis 5𝜃) = 𝑐5 − 10𝑐3𝑠2 + 5𝑐𝑠4

sin 2𝜃 = Im(cis 2𝜃) = 2𝑐𝑠
sin 3𝜃 = Im(cis 3𝜃) = 3𝑐2𝑠 − 𝑠3

sin 4𝜃 = Im(cis 4𝜃) = 4𝑐3𝑠 − 4𝑐𝑠3

sin 5𝜃 = Im(cis 5𝜃) = 5𝑐4𝑠 − 10𝑐2𝑠3 + 𝑠5.

4. Compute cos 7◦+cos 79◦+cos 151◦+cos 223◦+cos 295◦ without a calculator. (Hint: what does this
have to do with complex numbers?)

These numbers look random, but a closer inspection reveals they are in arithmetic progression, with
starting term 7 and increasing 72◦ each time. That’s the rotation of a pentagon!

We rewrite this as the real component of a sum of cises, then manipulate and evaluate:

cos 7◦ + cos 79◦ + cos 151◦ + cos 223◦ + cos 295◦ = Re(cis 7◦ + cis 79◦ + cis 151◦ + cis 223◦ + cis 295◦)
= Re((cis 7◦)(cis 0◦ + cis 72◦ + cis 144◦ + cis 216◦ + cis 288◦))
= Re((cis 7◦)(0))
= Re(0)
= 0.

Note that going from the second to third step, we used the fact that the cis expressions are the vertices
of a regular pentagon, which sum to 0. If you want to be more formal about it, a fun way to prove that
cis 0◦ + cis 72◦ + cis 144◦ + cis 216◦ + cis 288◦ = 0 is to set it to Ξ and calculate:
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Ξ ⋅ cis 72◦ = (cis 0◦ + cis 72◦ + cis 144◦ + cis 216◦ + cis 288◦) cis 72◦

= cis 72◦ + cis 144◦ + cis 216◦ + cis 288◦ + cis 360◦

= cis 72◦ + ... + cis 288◦ + cis 0◦

= Ξ.

If Ξ ⋅ (something that’s not one) = Ξ, then Ξ must be 0.

5. Factor the following:

(a) 𝑥6 − 1 as a difference of squares

We substitute 𝑦 = 𝑥3, giving 𝑦2 − 1 = (𝑦 + 1)(𝑦 − 1). Substituting back in, we get

(𝑥3 + 1)(𝑥3 − 1).

(b) 𝑥6 − 1 as a difference of cubes

We now substitute 𝑦 = 𝑥2, giving 𝑦3 − 1 = (𝑦 − 1)(𝑦2 + 𝑦 + 1). Substituting back in, we get

(𝑥2 − 1)(𝑥4 + 𝑥2 + 1)

.

(c) 𝑥4 + 𝑥2 + 1 over the real numbers

This one isn’t as obvious. We substitute 𝑦 = 𝑥2 to get 𝑦2 + 𝑦 + 1 and find the quadratic’s zeroes:

𝑦 = −1±
√
1−4

2 = −1±𝑖
√
3

2 .
So it is irreducible over the reals.

(d) 𝑥6 − 1 completely

We already broke it down into (𝑥3 + 1) and (𝑥3 − 1). Going further, we have 𝑥3 + 1 = (𝑥 + 1)(𝑥2 − 𝑥 + 1)
and 𝑥3 − 1 = (𝑥 − 1)(𝑥2 + 𝑥 + 1). To break apart the last two quadratics, we find their zeros:

𝑥2 − 𝑥 + 1 = 0 ⟹ 𝑥 = 1 ± 𝑖
√
3

2
⟹

(
𝑥 − 1 − 𝑖

√
3

2

)(
𝑥 − 1 + 𝑖

√
3

2

)
.

𝑥2 + 𝑥 + 1 = 0 ⟹ 𝑥 = −1 ± 𝑖
√
3

2
⟹

(
𝑥 + 1 − 𝑖

√
3

2

)(
𝑥 + 1 + 𝑖

√
3

2

)
.

Combining all these, we get the complete factorization over the complex numbers:

𝑥6 − 1 = (𝑥 + 1)

(
𝑥 − 1 − 𝑖

√
3

2

)(
𝑥 − 1 + 𝑖

√
3

2

)
(𝑥 − 1)

(
𝑥 + 1 − 𝑖

√
3

2

)(
𝑥 + 1 + 𝑖

√
3

2

)
.

(e) 𝑥4 + 𝑥2 + 1 completely

We could do a lot of work again, or we could observe that 𝑥4 + 𝑥2 + 1 = 𝑥6−1
𝑥2−1 = 𝑥6−1

(𝑥+1)(𝑥−1) . Removing the

denominator’s terms from our factorization of 𝑥6 − 1 we found in the last subproblem, we get

𝑥4 + 𝑥2 + 1 =

(
𝑥 − 1 − 𝑖

√
3

2

)(
𝑥 − 1 + 𝑖

√
3

2

)(
𝑥 + 1 − 𝑖

√
3

2

)(
𝑥 + 1 + 𝑖

√
3

2

)
.

6. Let 𝑓 (𝑧) = 𝑧+1
𝑧−1 .

(a) Without a calculator, compute 𝑓 2014(𝑧).
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This seems terrifying. Let’s try computing 𝑓 2(𝑧) and perhaps 𝑓 3(𝑧).

𝑓 2(𝑧) = 𝑓 (𝑧) + 1
𝑓 (𝑧) − 1

=
𝑧+1
𝑧−1 + 1
𝑧+1
𝑧−1 − 1

=
2𝑧
𝑧−1
2

𝑧−1

= 𝑧.

Oh.
Since 2014 is even, we have 𝑓 2014(𝑧) = (𝑓 2)1007(𝑧) = 𝑧.

(b) What if you replace 2014 with the current year?

Let 𝑦 be the current year. As I write this, it is 1492.
If 𝑦 is even, then 𝑓 𝑦(𝑧) = (𝑓 2)𝑦∕2(𝑧) = 𝑧. If 𝑦 is odd, then 𝑓 𝑦(𝑧) = 𝑓 ((𝑓 2)(𝑦−1)∕2(𝑧)) = 𝑓 (𝑧) = 𝑧+1

𝑧−1 .

7. Find Im
(
(cis 12◦ + cis 48◦)6

)
.

These are some weird looking angles. Thinking back to some older problems, however, the resultant angle
of the addition may be tractable. We draw a diagram, shown in Figure 4.

𝑦

𝑥

cis 48◦

cis 12◦

48◦

12◦

𝑥
48◦ − 𝑥

132◦

Figure 4: Adding cis 12◦ + cis 48◦.

Consider the isosceles triangle. The apex has angle measure 132◦ + 12◦ = 144◦, so the base angles are
each 𝑥 = 180◦−144◦

2 = 18◦. But Arg(cis 12◦ + cis 48◦) = 48◦ − 𝑥 = 30◦!
That’s a familiar angle. Indeed, we have 𝑧 = cis 12◦ +cis 48◦ = 𝑟 cis 30◦ for some 𝑟. It doesn’t really matter

which 𝑟, because

Im((𝑟 cis 30◦)6) = Im(𝑟6 cis 180◦) = Im(−𝑟6) = 0.

8. Let 𝑥 satisfy the equation 𝑥 + 1
𝑥 = 2 cos 𝜃.

(a) Compute 𝑥2 + 1
𝑥2 in terms of 𝜃.

Squaring the left hand side will get us some terms that look close to what we want.

(
𝑥 + 1

𝑥

)2
= 𝑥2 + 2 + 1

𝑥2
.

So 𝑥2 + 1
𝑥2 = (2 cos 𝜃)2 − 2 = 4 cos2 𝜃 − 2 = 2(2 cos2 𝜃 − 1) = 2 cos 2𝜃. Huh.

(b) Compute 𝑥𝑛 + 1
𝑥𝑛 in terms of 𝑛 and 𝜃.

It’s unclear how to start, so we might as well try to compute 𝑥3 + 1
𝑥3 in the same way.
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(
𝑥 + 1

𝑥

)3
=

𝑥3 + 3𝑥 + 3
𝑥
+ 1

𝑥3
= 8 cos3 𝜃

𝑥3 + 3
(
𝑥 + 1

𝑥

)

⏟⏞⏟⏞⏟
2 cos 𝜃

+ 1
𝑥3

= 8 cos3 𝜃

𝑥3 + 1
𝑥3

= 8 cos3 𝜃 − 6 cos 𝜃.

Now what? The astute among you may recognize that 8 cos3 𝜃 − 6 cos 𝜃 = 2 cos 3𝜃, at which point you
could make a conjecture (and could jump ahead). But suppose we didn’t find that.

We know that 𝑥2 + 1
𝑥2 = 2 cos 2𝜃. By analogy, if we make the substitution 𝑦 = 𝑥2 and 𝜙 = 2𝜃, we get that

𝑦 + 1
𝑦 = 2 cos𝜙, and thus 𝑦2 + 1

𝑦2 = 2 cos 2𝜙 ⟹ 𝑥4 + 1
𝑥4 = 2 cos 4𝜃. In general,

𝑥2
𝑚 + 1

𝑥2𝑚
= 2 cos 2𝑚𝜃.

The exponent on 𝑥, in this case 2𝑚, is the same as the multiple of 𝜃. Pretty sus. We’ve solved the problem
for 𝑛 which are powers of two, but we conjecture that the relationship holds for all integers 𝑛. To be explicit,
we want to show that

𝑥𝑛 + 1
𝑥𝑛

= 2 cos 𝑛𝜃.

There’s a couple of ways to do it. But seeing 𝑥𝑛 and cos 𝑛𝜃 in the same place immediately recalls expo-
nentiating cis 𝜃. So, let’s try rewriting the problem a bit by entering into the complex plane. Let 𝑥 = 𝑟 cis𝜙,
which we really should have done earlier. Then we’re given that 𝑟 cis𝜙 + 1

𝑟 cis𝜙 = 2 cos 𝜃. Working further,

2 cos 𝜃 = 𝑟 cis𝜙 + 1
𝑟
cis(−𝜙)

= 𝑟 cos𝜙 + 1
𝑟
cos𝜙 + 𝑖(𝑟 sin𝜙 − 1

𝑟
sin𝜙)

=
(
𝑟 + 1

𝑟

)
cos𝜙 + 𝑖

(
𝑟 − 1

𝑟

)
sin𝜙

The imaginary part needs to be zero, since the left hand side is real. So either 𝑟 = 1
𝑟 or sin𝜙 = 0.

Let’s examine each case. In the first case, 𝑟 = 1 (it can’t be −1 since 𝑟 ≥ 0. In the second case, we have
cos𝜙 = ±1, and substituting, we get

2 cos 𝜃 = ±
(
𝑟 + 1

𝑟

)
.

That’s not helpful... except now we know that 𝑟 is real and ≥ 0. Considering 𝑟+ 1
𝑟 , we see that it approaches

∞ as 𝑟 → 0. What range of values does it make? Graphing it shows that it has a range of [2,∞), reaching its
minimum at 𝑟 = 1. Another way to prove this is via AM-GM with 𝑥 = 2𝑟 and 𝑦 = 2

𝑟 :

𝑥 + 𝑦
2

≥ √
𝑥𝑦 ⟹ 𝑟 + 1

𝑟
≥
√

2𝑟
(2
𝑟

)
= 2.

But the range of 2 cos 𝜃 is [−2, 2], and the only possible value of the equation is the intersection of their
ranges, aka 2. So 𝑟 = 1 no matter what. That’s damn useful, because then

2 cos 𝜃 =
(
𝑟 + 1

𝑟

)
cos𝜙 + 𝑖

(
𝑟 − 1

𝑟

)
sin𝜙 From before

= 2 cos𝜙.
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So cos𝜙 = cos 𝜃. We wish to find an expression for 𝑥𝑛 + 1
𝑥𝑛 .

𝑥𝑛 + 1
𝑥𝑛

= 𝑟𝑛 cis𝑛 𝜙 + 1
𝑟𝑛

cis𝑛(−𝜙)

= 𝑟𝑛(cos 𝑛𝜙 + sin 𝑛𝜙) + 1
𝑟𝑛
(cos 𝑛𝜙 − sin 𝑛𝜙)

= cos 𝑛𝜙 + sin 𝑛𝜙 + cos 𝑛𝜙 − sin 𝑛𝜙
= 2 cos 𝑛𝜙
= 2 cos 𝑛𝜃.

Note that in the last step, we have to be careful, but cosine does have this property. Anyway, that’s a gg,
QED.
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