7 Your Daily Dose of Vitamin *i*

1. We will use complex numbers to find identities for \cot . Use Pascal's triangle to expand the following:

(a) $(a+b)^3$

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3.$$

(b) $(a+b)^4$

$$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$

(c) $(a+b)^5$

$$(a+b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5$$

- 1. (cont.) Then substitute $b = i = \sqrt{-1}$ and expand:
 - (d) $(a+i)^3$

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 = a^3 + 3a^2i - 3a - i.$$

(e) $(a+i)^4$

$$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4 = a^4 + 4a^3i - 6a^2 - 4ai + 1$$

- (f) $(a+i)^5$ $(a+i)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5 = a^5 + 5a^4i - 10a^3 - 10a^2i + 5a + i.$
- 1. (cont.) Finally, substitute $a = \cot \theta$ and expand:
 - (g) $(\cot \theta + i)^3$

$$(\cot \theta + i)^3 = a^3 + 3a^2i - 3a - i = (\cot^3 \theta - 3\cot \theta) + i(3\cot^2 \theta - 1).$$

(h) $(\cot \theta + i)^4$ $(\cot \theta + i)^4 = a^4 + 4a^3i - 6a^2 - 4ai + 1 = (\cot^4 \theta - 6\cot^2 \theta + 1) + (4\cot^3 \theta - 4\cot \theta).$ (i) $(\cot \theta + i)^5$

 $(\cot \theta + i)^5 = a^5 + 5a^4i - 10a^3 - 10a^2i + 5a + i = (\cot^5 \theta - 10\cot^3 \theta + 5\cot \theta) + i(5\cot^4 \theta - 10\cot^2 \theta + 1).$

1. (cont.) Consider $z = i + \cot \theta$.

(j) Use the above results to find identities for (i) $\cot 3\theta$, (ii) $\cot 4\theta$, and (iii) $\cot 5\theta$.

i. $\cot 3\theta$

Given the right triangle formed by $z = i + \cot \theta$ in Figure 7, we have $\tan(\operatorname{Arg} z) = \frac{1}{\cot \theta} = \tan \theta$, so $\operatorname{Arg} z = \theta$ and $z = r \operatorname{cis} \theta$.

Figure 1: $\operatorname{Arg}(i + \cot \theta) = \theta$.

Thus, we have

$$\cot 3\theta = \frac{\cos 3\theta}{\sin 3\theta}$$
$$= \frac{\operatorname{Re}(\operatorname{cis} 3\theta)}{\operatorname{Im}(\operatorname{cis} 3\theta)}$$
$$= \frac{\operatorname{Re}(r^3 \operatorname{cis} 3\theta)}{\operatorname{Im}(r^3 \operatorname{cis} 3\theta)}$$
$$= \frac{\operatorname{Re}(z^3)}{\operatorname{Im}(z^3)}.$$

We substitute in our expression for z^3 , $(\cot^3 \theta - 3 \cot \theta) + i(3 \cot^2 \theta - 1)$:

$$\cot 3\theta = \frac{\cot^3 \theta - 3 \cot \theta}{3 \cot^2 \theta - 1}.$$

i. cot 4θ

We proceed in the same way as the last subproblem.

$$\cot 4\theta = \frac{\cos 4\theta}{\sin 4\theta}$$
$$= \frac{\operatorname{Re}(\operatorname{cis} 4\theta)}{\operatorname{Im}(\operatorname{cis} 4\theta)}$$
$$= \frac{\operatorname{Re}(r^4 \operatorname{cis} 4\theta)}{\operatorname{Im}(r^4 \operatorname{cis} 4\theta)}$$
$$= \frac{\operatorname{Re}(z^4)}{\operatorname{Im}(z^4)}$$
$$\cot 4\theta = \frac{\cot^4 \theta - 6 \cot^2 \theta + 1}{4 \cot^3 \theta - 4 \cot \theta}.$$

i. cot 5*θ*

We proceed in the same way as the last subproblem.

$$\cot 5\theta = \frac{\cos 5\theta}{\sin 5\theta}$$
$$= \frac{\operatorname{Re}(\operatorname{cis} 5\theta)}{\operatorname{Im}(\operatorname{cis} 5\theta)}$$
$$= \frac{\operatorname{Re}(r^5 \operatorname{cis} 5\theta)}{\operatorname{Im}(r^5 \operatorname{cis} 5\theta)}$$
$$= \frac{\operatorname{Re}(z^5)}{\operatorname{Im}(z^5)}$$
$$= \frac{\operatorname{cot}^5 \theta - 10 \operatorname{cot}^3 \theta + 5 \operatorname{cot} \theta}{5 \operatorname{cot}^4 \theta - 10 \operatorname{cot}^2 \theta + 1}$$

(k) Graph z, z^2 , z^3 , z^4 , and z^5 , with $\theta \approx 75^\circ$. What is your solution method?

To graph these, I first calculated the approximate magnitude of z, which is how many times each subsequent power will be scaled by. We have $|1 + \cot 75^{\circ}| \approx 1.268$, so we only need to scale by about $\frac{5}{4}$ each time. Of course, we rotate by about 75° each time.

Figure 2: Graphs of z, z^2 , z^3 , z^4 , and z^5 .

2. Compute $(1 + i)^n$ for n = 3, 4, 5, ... Can you find a general pattern?

We have

$$(1+i)^3 = 1^3 + 3i - 3 - i = -2 - 2i$$

$$(1+i)^4 = 1^4 + 4i - 6 - 6i + 1 = -4 - 2i$$

$$(1+i)^5 = 1^5 + 5i - 10 - 10i + 5 + i = -4 - 4i.$$

We can find the pattern by representing $1 + i = \sqrt{2} \operatorname{cis} 45^\circ$. This shows that it has period 8 and let's us find an expression for $(1 + 1)^n$:

$$(1+i)^n = \left(\sqrt{2}\cos 45^\circ\right)^n = 2^{n/2}\cos\left(\frac{n\pi}{4}\right).$$

3. Expand and graph $\operatorname{cis}^{n} \theta$ for $n = 2, 3, 4, \dots$

Let $\cos \theta = c$ and $\sin \theta = s$. We have

$$\begin{aligned} (c+is)^2 &= c^2 + 2csi - s^2 = (c^2 - s^2) + i(2cs) \\ (c+is)^3 &= c^3 + 3c^2si - 3cs^2 - s^3i = (c^3 - 3cs^2) + i(3c^2s - s^3) \\ (c+is)^4 &= c^4 + 4c^3si - 6c^2s^2 - 4cs^3i + s^4 = (c^4 - 6c^2s^2 + s^4) + i(4c^3s - 4cs^3) \\ (c+is)^5 &= c^5 + 5c^4si - 10c^3s^2 - 10c^2s^3i + 5cs^4 + s^5i = (c^5 - 10c^3s^2 + 5cs^4) + i(5c^4s - 10c^2s^3 + s^5). \end{aligned}$$

The graphs of $cis^n \theta$ for $\theta \approx 50^\circ$ are shown in Figure 3 below.

Figure 3: Graphs of $cis^n \theta$ for $\theta \approx 50^\circ$.

(a) Why is the real part $\cos n\theta$ and the imaginary part $\sin n\theta$?

By DeMoivre's theorem, $\operatorname{cis}^n \theta = \operatorname{cis} n\theta$, which by definition has $\operatorname{Im}(\operatorname{cis} n\theta) = \operatorname{cos} n\theta$ and $\operatorname{Re}(\operatorname{cis} n\theta) = \sin n\theta$.

(b) Use your results to write identities for $\cos n\theta$ and $\sin n\theta$ for n = 2, 3, 4, 5.

Here they are. Again, let $\cos \theta = c$ and $\sin \theta = s$:

 $\cos 2\theta = \operatorname{Re}(\operatorname{cis} 2\theta) = c^2 - s^2$ $\cos 3\theta = \operatorname{Re}(\operatorname{cis} 3\theta) = c^3 - 3cs^2$ $\cos 4\theta = \operatorname{Re}(\operatorname{cis} 4\theta) = c^4 - 6c^2s^2 + s^4$ $\cos 5\theta = \operatorname{Re}(\operatorname{cis} 5\theta) = c^5 - 10c^3s^2 + 5cs^4$ $\sin 2\theta = \operatorname{Im}(\operatorname{cis} 2\theta) = 2cs$ $\sin 3\theta = \operatorname{Im}(\operatorname{cis} 3\theta) = 3c^2s - s^3$ $\sin 4\theta = \operatorname{Im}(\operatorname{cis} 4\theta) = 4c^3s - 4cs^3$ $\sin 5\theta = \operatorname{Im}(\operatorname{cis} 5\theta) = 5c^4s - 10c^2s^3 + s^5.$

4. Compute $\cos 7^\circ + \cos 79^\circ + \cos 151^\circ + \cos 223^\circ + \cos 295^\circ$ without a calculator. (Hint: what does this have to do with complex numbers?)

These numbers look random, but a closer inspection reveals they are in arithmetic progression, with starting term 7 and increasing 72° each time. That's the rotation of a pentagon!

We rewrite this as the real component of a sum of cises, then manipulate and evaluate:

$$\cos 7^{\circ} + \cos 79^{\circ} + \cos 151^{\circ} + \cos 223^{\circ} + \cos 295^{\circ} = \operatorname{Re}(\operatorname{cis} 7^{\circ} + \operatorname{cis} 79^{\circ} + \operatorname{cis} 151^{\circ} + \operatorname{cis} 223^{\circ} + \operatorname{cis} 295^{\circ})$$

= Re((cis 7^{\circ})(cis 0^{\circ} + cis 72^{\circ} + cis 144^{\circ} + cis 216^{\circ} + cis 288^{\circ}))
= Re((cis 7^{\circ})(0))
= Re(0)
= 0.

Note that going from the second to third step, we used the fact that the cis expressions are the vertices of a regular pentagon, which sum to 0. If you want to be more formal about it, a fun way to prove that $\operatorname{cis} 0^\circ + \operatorname{cis} 72^\circ + \operatorname{cis} 144^\circ + \operatorname{cis} 216^\circ + \operatorname{cis} 288^\circ = 0$ is to set it to Ξ and calculate:

$$\Xi \cdot \operatorname{cis} 72^{\circ} = (\operatorname{cis} 0^{\circ} + \operatorname{cis} 72^{\circ} + \operatorname{cis} 144^{\circ} + \operatorname{cis} 216^{\circ} + \operatorname{cis} 288^{\circ}) \operatorname{cis} 72^{\circ}$$

= cis 72° + cis 144° + cis 216° + cis 288° + cis 360°
= cis 72° + ... + cis 288° + cis 0°
= Ξ.

If $\Xi \cdot (\text{something that's not one}) = \Xi$, then Ξ must be 0.

5. Factor the following:

(a) $x^6 - 1$ as a difference of squares

We substitute $y = x^3$, giving $y^2 - 1 = (y + 1)(y - 1)$. Substituting back in, we get

 $(x^3 + 1)(x^3 - 1).$

(b) $x^6 - 1$ as a difference of cubes

We now substitute $y = x^2$, giving $y^3 - 1 = (y - 1)(y^2 + y + 1)$. Substituting back in, we get

$$(x^2 - 1)(x^4 + x^2 + 1)$$

(c) $x^4 + x^2 + 1$ over the real numbers

This one isn't as obvious. We substitute $y = x^2$ to get $y^2 + y + 1$ and find the quadratic's zeroes: $y = \frac{-1 \pm \sqrt{1-4}}{2} = \frac{-1 \pm i\sqrt{3}}{2}$. So it is irreducible over the reals.

(d) $x^6 - 1$ completely

We already broke it down into $(x^3 + 1)$ and $(x^3 - 1)$. Going further, we have $x^3 + 1 = (x + 1)(x^2 - x + 1)$ and $x^3 - 1 = (x - 1)(x^2 + x + 1)$. To break apart the last two quadratics, we find their zeros:

$$x^{2} - x + 1 = 0 \Longrightarrow x = \frac{1 \pm i\sqrt{3}}{2} \Longrightarrow \left(x - \frac{1 - i\sqrt{3}}{2}\right) \left(x - \frac{1 + i\sqrt{3}}{2}\right).$$
$$x^{2} + x + 1 = 0 \Longrightarrow x = \frac{-1 \pm i\sqrt{3}}{2} \Longrightarrow \left(x + \frac{1 - i\sqrt{3}}{2}\right) \left(x + \frac{1 + i\sqrt{3}}{2}\right).$$

Combining all these, we get the complete factorization over the complex numbers:

$$x^{6} - 1 = (x+1)\left(x - \frac{1 - i\sqrt{3}}{2}\right)\left(x - \frac{1 + i\sqrt{3}}{2}\right)(x-1)\left(x + \frac{1 - i\sqrt{3}}{2}\right)\left(x + \frac{1 + i\sqrt{3}}{2}\right).$$

(e) $x^4 + x^2 + 1$ completely

We could do a lot of work again, or we could observe that $x^4 + x^2 + 1 = \frac{x^6-1}{x^2-1} = \frac{x^6-1}{(x+1)(x-1)}$. Removing the denominator's terms from our factorization of $x^6 - 1$ we found in the last subproblem, we get

$$x^{4} + x^{2} + 1 = \left(x - \frac{1 - i\sqrt{3}}{2}\right) \left(x - \frac{1 + i\sqrt{3}}{2}\right) \left(x + \frac{1 - i\sqrt{3}}{2}\right) \left(x + \frac{1 + i\sqrt{3}}{2}\right)$$

6. Let $f(z) = \frac{z+1}{z-1}$.

(a) Without a calculator, compute $f^{2014}(z)$.

This seems terrifying. Let's try computing $f^2(z)$ and perhaps $f^3(z)$.

$$f^{2}(z) = \frac{f(z)+1}{f(z)-1} = \frac{\frac{z+1}{z-1}+1}{\frac{z+1}{z-1}-1} = \frac{\frac{2z}{z-1}}{\frac{2}{z-1}} = z.$$

Oh.

Since 2014 is even, we have $f^{2014}(z) = (f^2)^{1007}(z) = z$.

(b) What if you replace 2014 with the current year?

Let y be the current year. As I write this, it is 1492. If y is even, then $f^{y}(z) = (f^{2})^{y/2}(z) = z$. If y is odd, then $f^{y}(z) = f((f^{2})^{(y-1)/2}(z)) = f(z) = \frac{z+1}{z-1}$.

7. Find Im $((cis 12^\circ + cis 48^\circ)^6)$.

These are some weird looking angles. Thinking back to some older problems, however, the resultant angle of the addition may be tractable. We draw a diagram, shown in Figure 4.

Figure 4: Adding $cis 12^{\circ} + cis 48^{\circ}$.

Consider the isosceles triangle. The apex has angle measure $132^{\circ} + 12^{\circ} = 144^{\circ}$, so the base angles are each $x = \frac{180^{\circ}-144^{\circ}}{2} = 18^{\circ}$. But Arg(cis $12^{\circ} + cis 48^{\circ}) = 48^{\circ} - x = 30^{\circ}$! That's a familiar angle. Indeed, we have $z = cis 12^{\circ} + cis 48^{\circ} = r cis 30^{\circ}$ for some *r*. It doesn't really matter

That's a familiar angle. Indeed, we have $z = cis 12^\circ + cis 48^\circ = r cis 30^\circ$ for some *r*. It doesn't really matter which *r*, because

$$Im((r \operatorname{cis} 30^\circ)^6) = Im(r^6 \operatorname{cis} 180^\circ) = Im(-r^6) = 0.$$

8. Let x satisfy the equation $x + \frac{1}{x} = 2\cos\theta$.

(a) Compute $x^2 + \frac{1}{x^2}$ in terms of θ .

Squaring the left hand side will get us some terms that look close to what we want.

$$\left(x + \frac{1}{x}\right)^2 = x^2 + 2 + \frac{1}{x^2}.$$

So $x^2 + \frac{1}{x^2} = (2\cos\theta)^2 - 2 = 4\cos^2\theta - 2 = 2(2\cos^2\theta - 1) = 2\cos 2\theta$. Huh.

(b) Compute $x^n + \frac{1}{x^n}$ in terms of *n* and θ .

It's unclear how to start, so we might as well try to compute $x^3 + \frac{1}{x^3}$ in the same way.

$$\left(x + \frac{1}{x}\right)^3 =$$

$$x^3 + 3x + \frac{3}{x} + \frac{1}{x^3} = 8\cos^3\theta$$

$$x^3 + 3\underbrace{\left(x + \frac{1}{x}\right)}_{2\cos\theta} + \frac{1}{x^3} = 8\cos^3\theta$$

$$x^3 + \frac{1}{x^3} = 8\cos^3\theta - 6\cos\theta.$$

Now what? The astute among you may recognize that $8\cos^3\theta - 6\cos\theta = 2\cos 3\theta$, at which point you could make a conjecture (and could jump ahead). But suppose we didn't find that.

We know that $x^2 + \frac{1}{x^2} = 2\cos 2\theta$. By analogy, if we make the substitution $y = x^2$ and $\phi = 2\theta$, we get that $y + \frac{1}{y} = 2\cos \phi$, and thus $y^2 + \frac{1}{y^2} = 2\cos 2\phi \Longrightarrow x^4 + \frac{1}{x^4} = 2\cos 4\theta$. In general,

$$x^{2^{m}} + \frac{1}{x^{2^{m}}} = 2\cos 2^{m}\theta$$

The exponent on x, in this case 2^m , is the same as the multiple of θ . Pretty sus. We've solved the problem for n which are powers of two, but we conjecture that the relationship holds for all integers n. To be explicit, we want to show that

$$x^n + \frac{1}{x^n} = 2\cos n\theta.$$

There's a couple of ways to do it. But seeing x^n and $\cos n\theta$ in the same place immediately recalls exponentiating $\operatorname{cis} \theta$. So, let's try rewriting the problem a bit by entering into the complex plane. Let $x = r \operatorname{cis} \phi$, which we really should have done earlier. Then we're given that $r \operatorname{cis} \phi + \frac{1}{r \operatorname{cis} \phi} = 2 \cos \theta$. Working further,

$$2\cos\theta = r\cos\phi + \frac{1}{r}\cos(-\phi)$$
$$= r\cos\phi + \frac{1}{r}\cos\phi + i(r\sin\phi - \frac{1}{r}\sin\phi)$$
$$= \left(r + \frac{1}{r}\right)\cos\phi + i\left(r - \frac{1}{r}\right)\sin\phi$$

The imaginary part needs to be zero, since the left hand side is real. So either $r = \frac{1}{r}$ or $\sin \phi = 0$. Let's examine each case. In the first case, r = 1 (it can't be -1 since $r \ge 0$. In the second case, we have $\cos \phi = \pm 1$, and substituting, we get

$$2\cos\theta = \pm\left(r + \frac{1}{r}\right).$$

That's not helpful... except now we know that *r* is real and ≥ 0 . Considering $r + \frac{1}{r}$, we see that it approaches ∞ as $r \to 0$. What range of values does it make? Graphing it shows that it has a range of $[2, \infty)$, reaching its minimum at r = 1. Another way to prove this is via AM-GM with x = 2r and $y = \frac{2}{r}$:

$$\frac{x+y}{2} \ge \sqrt{xy} \Longrightarrow r + \frac{1}{r} \ge \sqrt{2r\left(\frac{2}{r}\right)} = 2.$$

But the range of $2\cos\theta$ is [-2, 2], and the only possible value of the equation is the intersection of their ranges, aka 2. So r = 1 no matter what. That's damn useful, because then

$$2\cos\theta = \left(r + \frac{1}{r}\right)\cos\phi + i\left(r - \frac{1}{r}\right)\sin\phi$$
From before
= $2\cos\phi$.

So $\cos \phi = \cos \theta$. We wish to find an expression for $x^n + \frac{1}{x^n}$.

$$x^{n} + \frac{1}{x^{n}} = r^{n} \operatorname{cis}^{n} \phi + \frac{1}{r^{n}} \operatorname{cis}^{n} (-\phi)$$

= $r^{n} (\cos n\phi + \sin n\phi) + \frac{1}{r^{n}} (\cos n\phi - \sin n\phi)$
= $\cos n\phi + \sin n\phi + \cos n\phi - \sin n\phi$
= $2 \cos n\phi$
= $2 \cos n\theta$.

Note that in the last step, we have to be careful, but cosine does have this property. Anyway, that's a gg, QED.