7 Your Daily Dose of Vitamin i

1. We will use complex numbers to find identities for cot. Use Pascal’s triangle to expand the

following:
(@) (a+b)
(a+b)® = a® +3db + 3ab* + b°.
(b) (a + b)*
(a+b)* = a* +4a°b + 6a2b* + 4ab’ + b*.
(¢) (a+by

(a+b)’ =a +5a*b + 10a°b* + 10a*b> + Sab* + b°.
1. (cont.) Then substitute » = i = v/—1 and expand:

(d) (a+i)?
(a+b) =d® +3a%b +3ab®> + b° = a® + 3d%i — 3a—i.
(e) (a+ i)
(a+ b)* = a* +4a%b + 6a°* + 4ab® + b* = a* + 4d%i — 64° — 4ai + 1.
) (a+ip

(a+10) =a +5a*b+ 10a°b* + 10a?b* + 5ab* + b° = @° + 5a*i — 10a® — 10a%i + 5a + i.

1. (cont.) Finally, substitute a = cot 8 and expand:

(g) (cot@ +i)

(cot 0+ i) =a® +3a% —3a—i=(cot> 0 —3cot0) + i(3cot? 6 — 1).
(h) (cot® +i)*
(cot @ + i)* = a* + 4a%i — 64° — 4ai + 1 = (cot* 6 — 6cot? 0 + 1) + (4cot® 6 — 4 cot §).
(i) (cot@+ i)
(cot 0 + i) = a° + 5a*i — 10a® — 10a%i + 5a + i = (cot®> 6 — 10 cot> 6 + 5cot ) + i(5cot* & — 10cot? 6 + 1).

1. (cont.) Consider z =i + cot 6.

(j) Use the above results to find identities for (i) cot 36, (ii) cot 46, and (iii) cot 56.

i. cot 30

1

Given the right triangle formed by z = i+cot 0 in Figure 7, we have tan(Arg z) = pr

and z = rcisé.

=tanf,so Argz =0

A

z=1i+cotl

S

cot @

\J
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Figure 1: Arg(i + cot 8) = 6.

Thus, we have

cos 36

sin 36
_ Re(cis 30)

"~ Im(cis 36)
_ Re(r? cis 30)
~ Im(3 cis 30)
_ Re(z?)

T Im(z3)

cot 30 =

We substitute in our expression for z3, (cot® @ — 3 cot 8) + i(3 cot? 0 — 1):

cot39 —3cotd

cot 36 =
3cot26 — 1

i. cot46

We proceed in the same way as the last subproblem.

cot46 = c9s 40
sin 460
Re(cis 40)
~ Im(cis 40)
_ Re(rcis40)
"~ Im(r* cis 40)
_ Re(zh
"~ Im(z%)
cot 40 = cot* 0 — 6¢cot? 0 + 1.

4cot30 —4cotd

i. cot50

We proceed in the same way as the last subproblem.

cos 560
sin 50
Re(cis 50)
~ Im(cis 56)
_ Re(r’ cis 50)
"~ Im(r5 cis 50)
_ Re(2)
T Im(z5)
_ cot’@ — 10cot’ 6 + 5 cot O
"~ 5cot*0—10cot20 + 1

cot 560 =

(k) Graph z, z2, z3, z*, and z°, with 0 ~ 75°. What is your solution method?

To graph these, | first calculated the approximate magnitude of z, which is how many times each subse-
quent power will be scaled by. We have |1 + cot 75°| ~ 1.268, so we only need to scale by about % each time.
Of course, we rotate by about 75° each time.
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Z4

Figure 2: Graphs of z, z2, z3, z*, and z°.
2. Compute (1 +i)" for n = 3,4, 5, .... Can you find a general pattern?

We have

I+ =1+3i-3-i =-2-2i
A+ =1*+4i-6-6i+1 —_4-2i
A+ =1 +5i-10-10i +5+1i — 44

We can find the pattern by representing 1 +i = \/icis 45°. This shows that it has period 8 and let’s us
find an expression for (1 + 1)":

n
A+ = <\/§c1s45°) =22 i (%)
3. Expand and graph cis” 6 forn =2,3,4, ....
Let cos@ = ¢ and sin @ = 5. We have
(c+ is)2 =c?+2csi—s* = (c2 - sz) +i(2cs)
(c+is)’ = +3c2%si = 3cs? = % = (¢ = 3es?) +i(BcPs — 5°)
(c+is)* = c* +4c3si — 6¢%s% — 4es’i + st = (¢ — 6¢25 + s + i(4c3s — 4es?)

(c+is) = +5c*si —10e3s? = 10?531 + 5¢s* + 571 = (¢ — 10¢3s? + 5est) + i(5¢*s — 106257 + 5°).

The graphs of cis” 8 for @ ~ 50° are shown in Figure 3 below.
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cis?9t Y
cis @

cis® 9

cis* 0

cis’ 0
Figure 3: Graphs of cis” 6 for 6 ~ 50°.
(a) Why is the real part cos n0 and the imaginary part sin n6?
By DeMoivre’s theorem, cis” 6 = cis nf, which by definition has Im(cis n) = cos nf and Re(cis nf) = sin nf.
(b) Use your results to write identities for cos n6 and sinnf forn = 2,3,4,5.

Here they are. Again, let cos@ = ¢ and sin 6 = s:

cos 20 = Re(cis 20) = ¢? — s

cos 30 = Re(cis 30) = ¢ — 3cs?

cos 40 = Re(cis 40) = ¢* — 6¢%s% + s*
cos 50 = Re(cis 50) = ¢ — 10¢3s% + 5¢s*
sin 20 = Im(cis 26) = 2cs

sin 30 = Im(cis 36) = 3¢%s — s°

sin46 = Im(cis40) = 4c3s — 4es>

sin 50 = Im(cis 50) = 5¢*s — 10c%s° + s°.

4. Compute cos 7° + cos 79° + cos 151° + cos 223° + cos 295° without a calculator. (Hint: what does this
have to do with complex humbers?)

These numbers look random, but a closer inspection reveals they are in arithmetic progression, with
starting term 7 and increasing 72° each time. That’s the rotation of a pentagon!
We rewrite this as the real component of a sum of cises, then manipulate and evaluate:

€08 7° + ¢cos 79° + cos 151° + c0s 223° + c0s 295° = Re(cis 7° + ¢is 79° + cis 151° + ¢is 223° + ¢is 295°)
= Re((cis 7°)(cis 0° + cis 72° + cis 144° + cis 216° + cis 288°))
= Re((cis 7°)(0))
= Re(0)
=0.
Note that going from the second to third step, we used the fact that the cis expressions are the vertices

of a regular pentagon, which sum to 0. If you want to be more formal about it, a fun way to prove that
cis 0° + cis 72° + cis 144° + cis 216° + cis 288° = 0 is to set it to E and calculate:
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2 -cis72° = (cis 0° + cis 72° + cis 144° + cis 216° + cis 288°) cis 72°
= cis 72° + cis 144° + cis 216° + cis 288° + cis 360°
= ¢is 72° + ... + cis 288° + cis 0°

If 2 - (something that’s not one) = E, then E must be 0.
5. Factor the following:
(a) x° — 1 as a difference of squares
We substitute y = x3, giving y* — 1 = (y + 1)(y — 1). Substituting back in, we get
x>+ D3 - 1.
(b) x° — 1 as a difference of cubes

We now substitute y = x2, giving y° — 1 = (y — 1)(3* + y + 1). Substituting back in, we get

=D+ x2+1)

(¢) x*+ x2 + 1 over the real numbers

This one isn’t as obvious. We substitute y = x? to get y* + y + 1 and find the quadratic’s zeroes:

)= —12V1-4 _ -12iV/3

2 2
So it is irreducible over the reals.

(d) x® — 1 completely

We already broke it down into (x> + 1) and (x? — 1). Going further, we have x> + 1 = (x + 1)(x2 — x + 1)
and x> — 1 = (x — 1)(x? + x + 1). To break apart the last two quadratics, we find their zeros:

X—x+1=0=x= 1ii\/§=><x—1_i\/§><x—l+2i\/§>.

2 2

—1+i 1—i 1+
x2+x+1=O=>x:%\/§=><x+ l\/§><x+ +2l\/§>

2

Combining all these, we get the complete factorization over the complex numbers:

x6—1=(x+1)<x— 1_5\/§>(x—#)(x—l)<x+#><x+#>.

(e) x* + x>+ 1 completely

6_ 6_ .
We could do a lot of work again, or we could observe that x* + x> + 1 = iz—_i = m Removing the

denominator’s terms from our factorization of x® — 1 we found in the last subproblem, we get

1< l-f)(x_ 1%) ( l-zfﬁ)(H 1%).

6. Let f(z) = =

z—1"

(a) Without a calculator, compute 12014(z).
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This seems terrifying. Let’s try computing f2(z) and perhaps f3(z).

z+1 2
f@+1 _ otl o
= = = Z.
f)—1 =z _, 2
z—1 z—1

N

(@)=
Oh.
Since 2014 is even, we have f2014(z) = (f2)1007(z) = z.

(b) What if you replace 2014 with the current year?

Let y be the current year. As | write this, it is 1492.
If yis even, then f¥(z) = (f2)"/2(z) = z. If yis odd, then f¥(z) = f((fH)¥V/2(2)) = f(z) = %

7. Find Im ((cis 12° + cis 48°)°).

These are some weird looking angles. Thinking back to some older problems, however, the resultant angle
of the addition may be tractable. We draw a diagram, shown in Figure 4.

y . o b
cis 12 -
b
b
o e
S12° e
//
7
132° -~
//
. b
cis 48° e
x -7
N 48° — x
W48°
7
X

Figure 4: Adding cis 12° + cis 48°.
Consider the isosceles triangle. The apex has angle measure 132° + 12° = 144°, so the base angles are

each x = B2-14° _ 180 Byt Arg(cis 12° + cis 48°) = 48° — x = 30°!
That'’s a familiar angle. Indeed, we have z = cis 12° +cis 48° = rcis 30° for some r. It doesn’t really matter

which r, because
Im((r cis 30°)®) = Im(r® cis 180°) = Im(—r®) = 0.
8. Let x satisfy the equation x + i = 2cos 6.

(a) Compute x2 + x—lz in terms of 6.

Squaring the left hand side will get us some terms that look close to what we want.

1\, 1
<x+—> =x"+2+—.
X x2

So x% + xiz =(2cos0)? —2=4cos?0 —2 =2(2cos?6 — 1) = 2cos 2. Huh.
(b) Compute x" + xi in terms of n and .

It's unclear how to start, so we might as well try to compute x> + xl—} in the same way.
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3

() -

x3+3x+§+l=800s30
x  x3
3 1 1 3
X +3(x+—)+—=8cos 0
x x3
——
2cosf

x>+ L =8cos’ 0 — 6cosb.
3
Now what? The astute among you may recognize that 8 cos? § — 6cos @ = 2cos 36, at which point you

could make a conjecture (and could jump ahead). But suppose we didn’t find that.
We know that x> + x—lz = 2cos 26. By analogy, if we make the substitution y = x> and ¢ = 26, we get that

v+ i = 2cos ¢, and thus y* + ﬁ =2cos2¢p = x* + x% = 2cos46. In general,

X+ % =2cos2"0.
X
The exponent on x, in this case 2™, is the same as the multiple of 8. Pretty sus. We've solved the problem
for n which are powers of two, but we conjecture that the relationship holds for all integers n. To be explicit,
we want to show that

1
x"+ — =2cosnd.
xl’l

There’s a couple of ways to do it. But seeing x" and cos né in the same place immediately recalls expo-
nentiating cis 8. So, let’s try rewriting the problem a bit by entering into the complex plane. Let x = rcis ¢,
which we really should have done earlier. Then we’re given that rcis ¢ + L =2cose. Working further,

rcis ¢

2cosf@ =rcis¢p + 1 cis(—¢)
r
=rcos¢+ 1cos<l)+i(rsin<l)— lsinq’))
r r

= <r+%>cos¢+i<r—l>sin¢

r

The imaginary part needs to be zero, since the left hand side is real. So either r = % or sing = 0.
Let’s examine each case. In the first case, r = 1 (it can’t be —1 since r > 0. In the second case, we have
cos ¢ = +1, and substituting, we get

2c0s9=i(r+l).
r

That's not helpful... except now we know that r is real and > 0. Considering r+%, we see that it approaches
oo as r — 0. What range of values does it make? Graphing it shows that it has a range of [2, o), reaching its
minimum at » = 1. Another way to prove this is via AM-GM with x = 2rand y = Z.

pE

x;yZ\/xy=>r+lZ 2r<g>=2.
r r

But the range of 2 cos 6 is [—2, 2], and the only possible value of the equation is the intersection of their
ranges, aka 2. So r = 1 no matter what. That's damn useful, because then

20089=<r+l>cos¢+i<r—l>sin(;b From before
r r

=2cos ¢.
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So cos ¢ = cos 6. We wish to find an expression for x" + xi"

x" + L rcis" ¢ + L cis"(—¢)
xn rl’l
= r"(cos n¢g + sin n¢p) + ln(cos ng — sin nep)
r

= cos n¢ + sinn¢ + cos ngp — sin ng
= 2cosng
= 2cosné.

Note that in the last step, we have to be careful, but cosine does have this property. Anyway, that’s a gg,
QED.
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